Vol.5 No.2 (2025) e-ISSN: 2808-0939 pp. 222-235

Are Decisions About Household Consumption Always Made With Perfect Knowledge?

Herispon^{1*}, Saiful Anuar², Eka Putra³

^{1,2,3)} Sekolah Tinggi Ilmu Ekonomi Riau, PekanbaruJln. H.R. Soebrantas No. 57 Panam, Pekanbaru herisponpiliang@gmail.com, ²⁾ saifulanuar4681@gmail.com

DOI: https://doi.org/10.54099/ijibmr.v5i2.1641

ARTICLE INFO

Research Paper

Article history:

Received: 25 October 2025 Revised: 1 November 2025 Accepted: 29 November 2025

Keywords: Bad Thinking, Imperfect Knowledge, Logistic Regression, Perfect Knowledge, Positive Thinking

JEL Classification: [D1, D7,D8, D9]

ABSTRACT

Description – The economic concept explains that a person is considered to have perfect information and knowledge before or when consuming a product. However, there is no limit on how much information is known about the product.

Purpose – This study identifies individuals before or when making consumption decisions regarding a product.

Methodology – Using non-probability sampling and purposive sampling methods, sampling technique with mixed questionnaires (online and offline). Using a sample of 422 respondents spread across several regions and cities in Riau Province, using 44 indicators as a reference for product information answered by respondents.

Findings – Individual consumption decisions analyzed with the logit probability of reading, caring and knowing information about instant noodles were 0.7599 or 76 percent.

Originality/Novelty – This study shows that the information held by individuals in instant noodle consumption can be identified and its size and quantity.

Implications – On the other hand, consumption can occur when individuals do not have any information about a product, due to emergency conditions, individual negligence, or being deceived by producers, so individual caution and the role of the government are needed so that consumers are not harmed.

This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License.

INTRODUCTION

In Indonesia, the age of instant noodles began with the release of "Supermi" in 1968 and "Indomie" in 1972. However, from the time Television of the Republic of Indonesia (TVRI) began airing commercial broadcasts, which included advertisements for instant noodle products, until private television emerged, the internet and its social media platforms also helped to promote and advertise instant noodles (Gunawan & Kunto, 2022). However, the modern era's advancements and innovations have had an effect, reducing the amount of time that family members have to prepare or serve meals. Numerous factors, including work schedules, hectic work, habits, exhaustion, workload, and time constraints, might cause this. Businesses that cater to this condition include cafes, restaurants, and fast food outlets that sell their products online or straight to customers (Kosasih, Barus, Rusniati, & Cahyani, 2025; Octavia, 2025), Instant noodles became a popular option as a low-cost alternative product that is simple to make at home and serve to eat because it is expensive if it occurs frequently (Isalman, Ilyas,

. **222**

Istianandar, & Ittaqullah, 2025). This led to the notion of finding a different way to serve meals quickly and efficiently (Suryandari & Ernawati, 2022).

Why instant noodles as a research object; *First*, Indonesia ranked second globally after China and Hong Kong in 2024, consuming 14.68 billion cups of instant noodles, according to data from the World Instant Noodles Association (WINA). Additionally, assuming a population of 250 million, the Bread, Biscuit, and Noodle Manufacturers Association reported in 2016 that Indonesians used 16 billion cups of instant noodles yearly, or one pack per person on average. *Second*, instant noodles are thought to satisfy a product's attributes or labeling specifications. Third, instant noodles are consumed by people of all ages in Indonesian society, including middle-class and lower-class individuals, as well as children and the elderly. Fourth, quick noodles are widely consumed in Indonesian families (Suryandari & Ernawati, 2022), As a result, it is likely that someone who regularly eats instant noodles knows a great deal about this product (Russo & Johnson, 1980; Duniaindustri.com, 2016). The Wings Group, with its "Mie Sedaap" product, and the Indofood Group, with its "Indomie" product, have controlled the majority of the Indonesian instant noodle market share throughout the last ten years. Nearly 93% of the Indonesian instant noodle market is controlled by these two businesses (Kompas.com, 2016).

The problem is relevant to the study because people need to know enough about the items they use in order to receive utility, and they will look for as much information as they can about them (Holdford, 2018). According to Brucks (1985) The process of determining whether or whether knowledge is complete, such as the finding that product knowledge and consumption are highly connected. Furthermore, knowledge and confidence in one's decision-making skills are intimately linked (Nils Magne Larsen, Sigurdsson, & Breivik, 2017). Consumption decisions may be made without considering the quantity of information available, though, because certain product features and data cannot be utilized as a complete guide to draw conclusions about actual knowledge (Park, Feick, & Mothersbaugh, 1992; Nokhiz, Patwari, Ruwanpathirana, & Venkatasubramanian, 2021). Furthermore Hernández & Kaeck (2019) highlights the importance of having knowledge about the product since it can help one avoid mistakes and hazards when utilizing it. As the research Rochmawati & Marlenywati (2015) outlined how the Indonesian population's eating habits and knowledge did not significantly correlate. Rather, it was discovered that patterns of instant noodle intake are influenced by social and cultural factors (Bourguignon & Chiappori, 2016). Although the causes and factors impacting purchase and consumption are specifically addressed in these research, they do not show the scope or quantity of knowledge that consumers possess when making decisions regarding their consumption. It would be feasible to ascertain how many different kinds of items a person consumes if they were able to learn every detail about the products they use.

Thus, this study aims to determine how much knowledge people have about a product either before or after using it, as well as whether or not they fall into the category of people who have flawless understanding of the product. A model for examining household consumption decisions based on knowledge-both perfect and imperfect-is presented in this study. Ultimately, there are two questions that can be asked about this research: i) What do households do before or during consumption of a product (instant noodles in this case), ii) How much do households know about the product, and iii) Do households fall into the category of those who care about product information as perfect knowledge or not?. The research's innovation, meanwhile, comes from the current data regarding quick noodle products, namely the amount or percentage of information that consumers are aware of or read before to or following their consumption of instant noodles.

LITERATURE REVIEW

Household Consumption Decisions

According to Lapteva, Trusova, & Grishina (2018) It's crucial to take into account the distinctions between the fields of economics and marketing before making a consumption decision. Purchasing

decisions are associated with the act of purchasing and owning a goods, whereas consumption decisions are associated with the usefulness and superiority of a product. For a number of reasons, such as changing your mind, discovering something more fascinating, forgetting, or engaging in another activity, purchasing decisions might be disrupted and not result in consumption (Chen & P, 2019). Because consumption happens after the purchase decision is made, the degree of consumption decision is higher than the purchase decision (Foxall, 2017). This study does not discuss the connection between purchase decisions and consumption because the main reason people buy products is to consume them. Even yet, each person will have different consumption and buying tendencies (Herath, 2019; Lawson, Gleim, & Hartline, 2021). This demonstrates that a person's decision to utilize a certain product or not is influenced by a number of different aspects or dimensions (Herispon, 2019). A collection of information about the product that is ultimately classified as perfect or imperfect knowledge can accommodate a number of aspects or dimensions prior to and during a consumption decision, including:

Gender, Education, Income, and Number of Family Members; Cultural and demographic elements, including social classes and subcultures; personality and demographic traits, such as gender and education; economic factors, such as income; family members, such as the number of members or dependents in the family; psychological (Ramya & Ali, 2016; Li, Choi, & Forrest, 2022). This study by Ramya and Li Choi explains that, after taking product information into account, factors including gender, education, income, and the number of family members are important when making judgments regarding consumption. Thus, it is possible to establish a hypothesis that "Gender, Education, Income, and Number of Family Members" take into account the quantity of information read (H₁) and not read (H₀) while making consumption decisions.

Brand, Packaging, Labeling; Understanding purchasing behaviour such as brands, products, and culture highlights the psychology of how customers think, feel, and select among available possibilities (Stankevich, 2017), Labeling, product origin, and manufacturing technique all have an impact on purchase decisions without being disregarded (Meixner, H, P, & C, 2014). Therefore, it is possible to establish the hypothesis that "Brand, Packaging, Labeling" affects or becomes information that is read (H₁), not read (H₀), and taken into consideration when making judgments about consumption.

Guarantee; Consumption decisions are also influenced by quality and specific information about the product, such as the composition of ingredients, nutritional value, and after-sales support as a guarantee of strengthening, as well as health concerns, specifically the effects after ingesting the product (Herath, 2019; Sembiring et al., 2024). Therefore, it is possible to create a hypothesis that "Guarantee" influences or becomes information that is read (H₁), not read (H₀), and taken into consideration when making consuming decisions.

Additional Services; Consumer purchase decisions are also influenced, either directly or indirectly, by the selling price of a product and pre-sales or post-sales services (Zhang, Seetharaman, & N, 2012). Thus, it is possible to develop a hypothesis that "Additional Services" affects or turns into information that is read (H_1) , not read (H_0) , and taken into account when making judgments about consumption.

Product Information Sources; Given that 74% of consumers base their purchasing decisions on social media, it is quite likely that consumers will base their purchases on social media recommendations and testimonials, friendship groupings, and social standing (Bharucha, 2018). Additionally, what impact does consumers' information process have on their purchasing and consumption decisions (Wood & Hayes, 2012). Thus, it is possible to hypothesize that "Product Information Sources" affect or turn into information that is read (H₁), not read (H₀), and taken into account when making judgments about consumption. In the end, this collection of data serves as a reference for general knowledge, sometimes referred to as perfect or imperfect knowledge.

Perfect or Imperfect Knowledge

Households need to be aware of and have sufficient information about the specific dangers associated with a product they consume; this information can be found on food packaging or labelling (Lapteva et al., 2018). On the other hand, according to Brucks (1985) There are two types of knowledge: i) Subjective knowledge, which describes how individuals feel and what they know about a product; ii)

Objective knowledge, which is the real understanding about the thing being consumed; this objective knowledge can assist people in thinking about and using the information they have learned. Also support from studies Park et al (1992) that a person needs to be aware of several details about a product, including its quality and other details found on its package.

A product's physical characteristics, durability, materials utilized, production techniques, production technologies, and quality certification from certain organizations can all be used to determine whether or not it is of high quality (Agyekum, Haifeng, & Agyeiwaa, 2015). It's simple to identify a product's physical attributes for branded, high-tech, and non-food items, but what about packaged and unpackaged food and drink items? Is it feasible to learn everything they contain? (Larsen, Sigurdsson, & Breivik, 2017; Naini, Santoso, Andriani, Claudia, & Nurfadillah, 2022). Testimonials, branding, packaging, labeling, warranties, registration, certification, features, materials, production methods, and extra services are therefore some of the elements that can be utilized to characterize a high-quality product, particularly for packaged or unpackaged food items (Russo & Johnson, 1980; Dimara & Skuras, 2005; Zhang et al., 2012; Naini et al., 2022). Next study Agyekum, Haifeng, & Agyeiwaa (2015) highlights the features or attributes of high-quality products, such as color, weight, suitable container size, price, and brand.

Meanwhile studies Hernández & Kaeck (2019) He clarified that acquiring a product should be based on information in order to prevent fraud brought on by consumer ignorance. On the other hand, a product might purposefully withhold some information. As a result, family attitudes can be classified as either perfect or imperfect knowledge when it comes to making consumption decisions. In the end, it is decided that a high-quality product is one that can offer a collection of information, which serves as the standard that families, whether or not they have perfect knowledge, must adhere to when making consumption decisions. Additionally, the hypothesis is formulated as H₁ with perfect information and H₀ with incomplete knowledge in accordance with the analysis approach that will be employed, which is binary logistic regression.

METHOD

Research design; A survey study was conducted utilizing both an online and a direct questionnaire. Respondents who used social media were given access to the online survey. A Facebook group with 1,300 members and a WhatsApp group with 550 members were used to choose the online responders, In the meantime, 600 respondents-including families-who lived in the researcher's residential area were given questionnaires directly. 422 participants who were willing to answer were selected through the use of purposive sampling methods and approaches.

Variables and Measurement; the dependent variable in this study is Perfect Knowledge = 1 and Imperfect Knowledge = 0 in household consumption decisions and the independent variables are; Gender = GEN, Education = EDC, Income = INC, Dependents = DPD, Brand = BRD, Packaging = PKG, Labeling = LBL, Guarantee = GRT, Additional Services = SPS, Source of Goods Information = SIG. To measure this variable, respondents were asked about their level of agreement using the binary category "Yes or No". (Hosmer & Lemeshow, 2000). Additionally, the parameters used in this study include: two indicators for measuring GEN, two indicators for measuring EDC, two indicators for measuring INC, two indicators for measuring DPD, six indicators for measuring BRD, seven indicators for measuring PKG, seven indicators for measuring CBT, five indicators for measuring SPS, and four indicators for measuring GIS, for a total of 44 indicators.

Utilizing two tests, the validity test and the reliability test, on data with the following presumptions that apply to logistic regression analysis: (i) the dependent variable must be dichotomous (2 categories, such as 1 = yes or 0 = no); (ii) the dependent and independent variables do not need to have a linear relationship; and (iii) the assumption of multivariate normality is not required. Additionally, this study's

stages of analysis include: i) data analysis prior to the introduction of independent variables, ii) simultaneous (overall) testing of all variables, iv) partial test of the influence of Wald statistics and odds ratio, which involves determining the impact of each independent variable on the dependent variable (H0 has no effect, Ha has an effect), v) parameter estimation, which entails constructing a logistic regression equation by figuring out the equation's coefficients, and vi) measuring predictability.

Next, determine the estimated coefficients of the independent and dependent variables using the logit value or odds value using the procedure to test for perfect or imperfect knowledge. (Hosmer & Lemeshow, 2000), namely:

$$Logit_i = ln\left(\frac{Prob_{event}}{1 - Prob_{event}}\right) = \ b_0 + b_1 X_1 + b_2 X_2 + , \dots, b_n X_n \qquad or \qquad ln\left(\frac{\widehat{P}}{1 - \widehat{P}}\right) = \ \beta_0 + \beta_1 X_n + b_2 X_2 + \dots, b_n X_n$$

$$Odds_{i} = \left(\frac{Prob_{event}}{1 - Prob_{event}}\right) = e^{b_{0} + b_{1}X_{1} + \dots, b_{n}X_{n}} \quad or \quad \hat{P} = \frac{\exp(\beta_{0} + \beta_{1}X)}{1 + \exp(\beta_{0} + \beta_{1}X)} = \frac{e^{\beta_{0} + \beta_{1}X}}{1 + e^{\beta_{0} + \beta_{1}X}}$$

Where Ln = natural logarithm, β_0 = constant, $\beta_{1,2,3}$ = coefficient, P^- =P-Accent, with the equation model above, it will undoubtedly be challenging to interpret the regression coefficient. Accent is a logistic probability, meaning the likelihood of an event occurring with perfect or imperfect knowledge, while exp is an exponential function (the opposite of the natural logarithm function). The natural logarithm is a form of logarithm with a value of 2.71828182845904 or rounded to 2.72. Therefore, the term Odds Ratio or abbreviated as exp(B) is used, which is the exponent of the regression coefficient. Statistically, we can use this limit to determine the household consumption decision P(Y=1) with a limit of 0.50 as the cutoff, namely; > 0.50 is perfect knowledge or < 0.50 is imperfect knowledge (Hair, Black, Babin, & Anderson, 2014; Harlan, 2018).

Data Models and Analysis; With the parameter choice (1 or 0), this study examines the causal relationship between perfect or imperfect knowledge as a dependent variable with independent factors, namely; gender, education, income, and number of household members. Because the variables use several indicators, the values used for Brand, Packaging, Labeling, Guarantee, Additional Services, and Product Information Sources are categories = the number of answers from the variable divided by the number of variable parameters, with a cut off of 0.65 = 0 and > 0.65 = 1. This cut off is used even though it exceeds the specified limit (0.50), with the hope of producing a more accurate analysis (Hair, Black, Babin, & Anderson, 2014; Harlan, 2018). Ten independent variables and one dependent variable are used in the following binary logistic regression equation to model and assess every variable;

$$\begin{split} Logit_i &= ln \left(\frac{Prob_{event}}{1 - Prob_{event}} \right) \\ &= b_0 + b_1 GEN + b_2 EDU + b_3 INC + b_4 DEP + b_5 BRD + b_6 PKG + b_7 LBL \\ &+ b_8 GRT + b_9 SPS + b_{10} SIG + \varepsilon \end{split}$$

or

$$\hat{P} = \frac{\exp(\beta_0 + \beta_1 GEN + \beta_2 EDU + \beta_3 INC + \beta_4 DEP + \beta_5 BRD + \beta_6 PKG + \beta_7 LBL + \beta_8 GRT + \beta_9 SPS + \beta_{10} SIG)}{1 + \exp(\beta_0 + \beta_1 GEN + \beta_2 EDU + \beta_3 INC + \beta_4 DEP + \beta_5 BRD + \beta_6 PKG + \beta_7 LBL + \beta_8 GRT + \beta_9 SPS + \beta_{10} SIG)}$$

Perfect knowledge (full information) is assigned a value of 1, and imperfect knowledge (insufficient information) is assigned a value of 0. These are the consumption decision categories in this study.. Kedua kategori ini termasuk dalam satu variabel dependen yang disebut keputusan konsumsi. Meanwhile, the independent variables are: Gender = GEN, Education = EDC, Income = INC, Dependents = DPD, Brand = BRD, Packaging = PKG, Labeling = LBL, Guarantee = GRT, Additional Services = SPS, Source of Information About Goods = SIG. According to the hypothesis H₀, which holds that there is no relationship between the dependent and independent variables, the test is carried

out by evaluating the significance of the dependent and independent variables. The dependent and independent variables in the hypothesis H_a have a relationship with a significance level (α).

Using the following criteria, H_o is either accepted or rejected based on a significance level (α) of 5%: 1) If the probability value (sig) > significance level (α) and the estimated Wald statistic value < Chi-square table, H_o is not rejected. In other words, the hypothesis that the independent variable affects the dependent variable is rejected, or H_a is rejected. 2) If the probability value (sig) < significance level (α) and the Wald statistic > Chi-square table, H_o is rejected. This indicates that the hypothesis that the independent variable affects the dependent variable is accepted, or that H_a is accepted.

RESULT

A total of 422 respondents participated in this study, and data tabulation and validation were then conducted. The characteristics and profiles of respondents who consume instant noodles are shown in the following table 1:

Table 1. Characteristics of instant noodle consumption profile

No	Information	Respondents	Percent	No	Information	Respondents	Percent
1	Have you ever eaten instant noodles?	420	99,5	7	Woman eating instant noodles	245	58
2	Never eat instant noodles	2	0,05	8	Instant noodle eating man	177	42
3	Eat 1 pack of noodles / day	21	0,51	9	High School Education	308	73
4	Eat 1 pack of noodles / week	215	0,51	10	College	114	27
5	Eat 1 pack of noodles / month	186	0,44	11	Income below minimum wage	287	68
6	Age of eating noodles 5 to > 65	401	0,95	12	Income above the minimum	135	32
	years				wage		

Source: 2024 research

The next stage is to perform reliability and validity tests on the parameters that respondents have provided. The limits that are used to test the validity of all indicators are; Corrected Item total Correlation (Product Moment Correlation) compare r_{count} with r_{table} on degrees of freedom (df) = n-2 α = 5%, that is, as much as 0.095475, while the reliability test on Cronbach's alpha with a minimum limit is; 0,50 (Hair et al, 2014). This is taken into account because the parameters for survey research were developed separately, whereas the following table pertains to validity and reliability tests:

Table 2. Validity and Reliability Test

Variable/ Indicator	Cronbah'c Alpha	Validity	Variable/ Indicator	Cronbah'c Alpha	Validity	Variable/ Indicator	Cronbah'c Alpha	Validity
1	2	3	1	2	3	1	2	3
Gender			Labeling	0.670		Supple Serveice	0.590	
Education			LBL1		0.416	SPS1		0.141
Income			LBL2		0.507	SPS2		0.294
Dependent			LBL3		0.492	SPS3		0.412
			LBL4		0.291	SPS4		0.482
Brand	0.691		LBL5		0.362	SPS5		0.461
BRD1		0.230	LBL6		0.329			
BRD2		0.515	LBL7		0.327	Source Information	0.512	
BRD3		0.532				SIG1		0.200
BRD4		0.487	Guarantee	0.652		SIG2		0.300
BRD5		0.477	GRT1		0.183	SIG3		0.283
BRD6		0.325	GRT2		0.412	SIG4		0.327
			GRT3		0.488			
Packaging	0.557		GRT4		0.346			
PKG1		0.211	GRT5		0.414			
PKG2		0.297	GRT6		0.308			
PKG3		0.229	GRT7		0.422			
PKG4		0.370						
PKG5		0.394						
PKG6		0.351						
PKG7		0.263						
C								

Source: research 2024

Validity test results for each indicator, that $r_{count} > r_{table}$ (0,095475), while the reliability test is; Cronbach'c Alpha_{count} > Cronbach'c Alpha_{table} (0,500) it can be concluded that all indicators tested are valid and reliable. Additionally, out of the 422 respondents surveyed, 0.995 said they enjoyed and had eaten instant noodles with soy sauce and chili sauce, while 0.005 said they did not enjoy and had never eaten instant noodles, according to the results of the respondent profile analysis. Six percent of people regularly ate one pack of instant noodles every day, 56.4% consumed one pack per week, and 37.4% consumed one pack per month. Additionally, this study demonstrates that all age groups consume instant noodles in households.

Additionally, this study demonstrates that women consume more instant noodles in households (58%), while men consume 42%. The study's findings indicate that high school graduates consume the most instant noodles in homes (73%), followed by college graduates (27%). Additionally, household groups with incomes below the minimum wage (UMK) account for 58% of household consumption of instant noodles, while household groups with incomes above the UMW account for 42%. Lastly, homes with four or more family members account for up to 45% of the total number of dependents in the household, while households with more than four family members account for up to 55%. The analysis is then carried out until the logistic regression analysis's results are displayed; i) prior to the independent variables being entered (such as Block 0; Case processing summary, Dependent variable coding, Iteration history, Classification table, Variables in the equation, and Variables not in the equation); ii) following the entry of the independent variables (such as Block 1; Iteration history and Omnibus test of model coefficients, Classification table, Model summary, Hosmer and Lemeshow test); iii) concurrent test, iv) partial test.

Before Entering Independent Variables; Accept H_0 , which indicates that the model was fit with the data before the independent variable was added. Using iteration, if the independent variable is not included in the model N = 422, the value is -2 Log Likelihood; 455.004, while the degree of freedom (DF); N-1 = 422-1 = 421 with chi square ($\chi 2$) in the DF table 421 (use Excel and write =chiInv(0.05,421), the result is 469.8388.

Based on empirical data on the dependent variable, conditions that should occur are classified. Of these, 325 samples have the reference category of the dependent variable or good consequences (code 1), which is perfect knowledge, while 97 examples have imperfect knowledge. Before the independent variable is added to the model, the total percentage value is 325/422 = 0.77, or 77%, because there are 422 samples. A constant beta coefficient of 1.209, an odd ratio or Exp(B) of 3.351, and a significance value or p-value from the Wald Test of 0.000 are the variables in the equation when the independent variable is not included in the model. GEN, EDU, INC, DEP, BRD, PKG, LBL, GRT, SPS, and SIG are independent variables that are not part of the equation. This condition predicts whether respondents will be classified as having perfect or imperfect knowledge based solely on constants. The constant has a significance value of 0.000 (<0.05), which indicates that the proportion of perfect knowledge can be explained by a simple equation model (constant).

After Entering Independent Variables; The Omnibus Coefficient Model Test and iteration history yielded a 0.000 p-value. Since this number is less than 0.05, H0 is rejected, and it is determined that either all of the independent factors combined have an impact on perfect knowledge of category Y, or at least one of them does. 91.9 percent of observations are classified by the model. This indicates that the logistic regression model properly classified 388 observations out of 422 data.

By adding ten independent variables to the summary model, the estimated parameters (-2 Likelihood) changed by 166.077. when compared to the R-square values of 0.751, or 75.1 percent (Nagelkerte), and 0.496, or 49.6 percent (Cox & Snell R Square). With ten independent variables-GEN, EDU, INC, DEP, BRD, PKG, LBL, GRT, SPS, and GIS-it can be concluded that 75.1 percent of the variables examined account for the proportion of high perfect knowledge understanding, with the remaining 24.9 percent coming from variables not included in this study.

I. J. of Islamic Business and Management Review

With the hypothesis that H_0 = the model adequately explains the data (Goodness of Fit) and H_1 = the model does not adequately explain the data, the Hosmer and Lemeshow test is a chi-square test. If the significant value, or p-value, is greater than 0.05, the Hosmer and Lemeshow test value is considered good. Using Excel, enter =chiInv(0.059) to find the chi-square value of DF table 1 (the number of independent variables or 10-1) at α 0.05. The result is 16.198. There is no difference between the model and the observed value, indicating that the logistic regression equation can be used to explain the relationship between the independent and dependent variables. The chi-square Hosmer square value and Lemeshow is smaller than the chi-square table value (4.005 < 16.9189), or the significant value of Hosmer and Lemeshow calculated the size of α = 0.05, namely (0.857 > 0.05), indicating that H0 is accepted. In summary, the model's goodness of fit adequately explains the data.

Overall Model Test; To ascertain if the model is significant or not, two tests are performed: an overall test and a partial test. The model fit test is the first model that comes from the logistic regression analysis. To verify the overall significance of the α coefficient, a simultaneous test is performed (Lemeshow et al, 1990). Using the hypothesis $H_0 = 0$ and $H_1 \neq 0$, concluding that H_0 should be rejected if the p-value is less than, the results can be seen in the omnibus test table step 1. The omnibus test value is said to be good if the value is significant or p-value <0.05. To determine the omnibus test value on DF 10 (the number of independent variables or 10-1) at α 0.05 (use excel and write =chiInv(0.05,9) the result is 16.198. So, the result of the omnibus test value, the value of the omnibus table is (288.928> 16.9189) or the value of the omnibus test is significantly small at $\alpha = 0.05$, namely (0.000<0.05) meaning H_0 is rejected. If the p-value is less than 0.05 (0.000), then H_0 is either rejected or not accepted. At a 95% confidence level, either at least one of the variable coefficients is not equal to zero or the available data does not support H_0 . One variable coefficient parameter was discovered to be nonzero based on the hypothesis test for the entire test. This suggests that the model that was produced is important. A partial test was then run to identify which variable is nonzero.

Partial Test Model; To determine whether variables have a significant impact and incorporate them into the model, binary logistic regression analysis is used. If the p-value is significant < , then H0 is rejected, and the analysis's output can be shown as follows.

Table 3.	Variab	les in tł	he Equation
----------	--------	-----------	-------------

							Odd Ratio /	95% C.I.fo	or EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	Gender	040	.420	.009	1	.925	.961	.422	2.191
_	Education	1.081	.448	5.816	1	.016	2.947	1.224	7.092
	Income	.839	.418	4.035	1	.045	2.315	1.021	5.251
	Dependent	1.025	.423	5.867	1	.015	2.786	1.216	6.384
	Brand	2.937	.716	16.825	1	.000	18.862	4.635	76.752
	Packaging	2.507	.574	19.076	1	.000	12.264	3.982	37.771
	Labeling	2.606	.440	34.998	1	.000	13.539	5.711	32.098
	Guarantee	3.405	.640	28.316	1	.000	30.127	8.594	105.608
	Supplementary Service	2.306	.467	24.418	1	.000	10.036	4.021	25.049
	Sourceof information	1.995	.523	14.569	1	.000	7.353	2.640	20.484
	Constant	-17.549	1.535	49.101	1	.000	.000		

a. Variable(s) entered on step 1: Gender, Education, Income, Dependent, Brand, Packaging, Labeling, Guarantee, Supplementary - Service, Source of information.

A model fit test and a partial model parameter test must be performed on the generated regression model. The probability of an occurrence, or the odds ratio value = Exp(B), can be understood as follows: The conclusion is that there is no influence because the Exp(B) value of male or female gender on consumption decisions (perfect or imperfect knowledge) is 0.961 and not significant (sig 0.925). Furthermore, it may be inferred that those with college degrees are more perfect than those with only a high school education because the Exp(B) value of

education on consumption decisions (perfect or imperfect information) is 2.947. This interpretation is made if each variable falls into one of the following coding categories: 1) Education is the independent variable; a high school graduate receives code 0, and a college graduate receives code 1. 2) Consumption decisions are the dependent variable.

The following variables are coded as follows: 0 for imperfect knowledge, 1 for perfect knowledge, and so on. This is done to demonstrate the significance of the final model and its applicability in forecasting the likelihood of perfect information in consumption choices. In terms of statistics, this entails demonstrating the significance of the estimated parameters of the regression model. The following test, a partial test, will be conducted if the results are substantial. The variables in the equation table above demonstrate the parameter estimates for each variable, which are verified using partial testing with the premise that H_0 : $\beta_0=\beta_1=\beta_2=\beta_3=\beta_4=\beta_5=\beta_6=\beta_7=\beta_8=\beta_9=\beta_{10}$ dan H_1 : $\beta_0\neq\beta_1\neq\beta_2\neq\beta_3\neq\beta_4\neq\beta_5\neq\beta_6\neq\beta_7\neq\beta_8\neq\beta_9\neq\beta_{10}$. The significance value (p-value) is derived from the variables in the equation table above, and the testing criteria utilize a significance threshold of 95% or = 0.05% with the condition that H_0 is rejected if the p-value < 0, and the analysis's output can be shown as follows.

Table 4. Coefficient and Path Coefficient

Coefficient	Path Coefficient (β)	Condition	Explanation
β ₀ Constanta	-17,549	p-value $< \alpha (0.000 < 0.05)$	Reject H ₀
β_1 GEN	-0,040	p-value $< \alpha (0.925 > 0.05)$	Fail Reject Ho
β_2 EDU	1,081	p-value $< \alpha \ (0.016 < 0.05)$	Reject H ₀
β_3 INC	0,839	p-value $< \alpha \ (0.045 < 0.05)$	Reject H ₀
β_4 DEP	1,025	p-value $< \alpha \ (0.014 < 0.05)$	Reject H ₀
β ₅ BRD	2,937	p-value $< \alpha \ (0.000 < 0.05)$	Reject H ₀
β ₆ PKG	2,507	p-value $< \alpha \ (0.000 < 0.05)$	Reject H ₀
$\beta_7 LBL$	2,606	p-value $< \alpha \ (0.000 < 0.05)$	Reject H ₀
β_8 GRT	3,405	p-value $< \alpha \ (0.000 < 0.05)$	Reject H ₀
β ₉ SPS	2,306	p-value $< \alpha \ (0.000 < 0.05)$	Reject H ₀
β ₁₀ SIG	1,995	p-value $< \alpha \ (0.000 < 0.05)$	Reject H ₀

Note; Gender=GEN, Education=EDU, Income=INC, Dependent=DEP, Brand=BRD, Packaging=PKG, Labeling=LBL, Guarantee=GRT, Suplementary Service=SPS, Source of Information=SIG

Details: A 95% confidence level analysis of the data reveals that 10 parameters do not support H₀ and 1 does. This indicates that each variable in the model has a sizable partial influence on Y:

Gender: Male = 1 and female = 0, with a p-value (significant > 0.05) that fails to reject H_0 and a Wald value of 0.009. There is no difference between men and women in terms of the level of knowledge when it comes to making consumption decisions, as indicated by the odds ratio, or exp(B), of 0.961 and Ln 0.961 = -0.0398.

Education: College Graduate = 1, High School Graduate = 0, Wald value 5.816, p-value (significance 0.05) rejects H_0 , indicating that the level of decision-making expertise varies between college and high school graduates. The impact of education is seen by the odds ratio, or exp(B), of 2.947 and Ln 2.947 = 1.0808. Since total knowledge and a college degree are positively connected, college graduates have a 2.947-fold higher likelihood than high school graduates.

With a Wald value of 4.035, p-value (significant 0.05), and a rejection of H_0 , income; Above Regional Minimum Wage = 1, Below Regional Minimum Wage = 0 shows that ARMW and URMW differ in the quality of information on consumption choices. The effect on income is shown by the odds ratio, or exp(B), of 2.315 and $ext{Ln 2.315} = 0.8394$. As a result, perfect knowledge and income above the UMR are positively connected, increasing the likelihood by 2.315 times as opposed to income below the UMR.

With a Wald value of 5.867, p-value (significant 0.05), and a rejection of H_0 , the number of family dependents, number of family members 4 people = 1, and number of family members > 4 people = 0

show that there is a difference between the two groups in terms of perfect knowledge regarding consumption choices. A dependent impact is indicated by the odds ratio, or $\exp(B)$, of 2.786 and Ln 2.786 = 1.0246. Due to the strong link between Family Members 4 and perfect knowledge, the likelihood of Family Members 4 occurring is 2.786 times greater than that of Family Members > 4.

With a Wald value of 16.825, p-value (significance 0.05) rejects H_0 , meaning that there is a difference between reading and knowing a brand and not reading and knowing a brand when making a purchase decision. Brand; Reading and knowing the Brand =1 Not reading and knowing the Brand =0. Ln 18.862 =2.9371 and the odds ratio, or exp(B), of 18.862 show how influential the brand is. The likelihood of reading and understanding the brand is 18.862 times higher than that of not reading and understanding it. This indicates that perfect knowledge is positively correlated with reading and understanding the brand, its symbols, vocabulary, color, design, and taste.

Packaging: H_0 ; seeing and knowing PKG = 1; not seeing and knowing PKG = 0 is rejected by Wald 19.076, p-value (significant 0.05). This suggests that there is a distinction between the two in terms of fully understanding consumer choices. The odds ratio, or $\exp(B)$, of 12.264 and Ln 12.264 = 2.5067 demonstrate the effect of packaging. With complete knowledge, it can be said that reading about the package makes it 12.264 times more likely that you will read it. The favorable correlation between seeing and understanding the packaging lends credence to this.

Labeling, LBL =1, There is a difference between reading and knowing the LBL and not reading and knowing the LBL in terms of the fullness of knowledge regarding consumption decisions, as indicated by the brand LBL = 0 with a Wald value of 34.998 and a p-value (significant 0.05) that rejects H_0 . The effects of labeling are demonstrated by the odds ratio, or exp(B), of 13.539 and Ln 13.539 = 2.6056. The likelihood that someone will read and comprehend the label is 13.539 times higher than if they had complete knowledge, suggesting a positive relationship between the two.

There is a difference between reading and knowing GRT in terms of perfect knowledge on purchasing decisions, as evidenced by the Wald value of 28.316, p-value (significant 0.05), and rejection of H_0 for consumers who read and know GRT = 1 and those who do not. The impact of the promise is seen by the odds ratio, or exp(B), of 30.127 and Ln 30.127 = 3.4054. It is 30.127 times more likely that someone will read and understand the promise than not to do so because the assurance of reading and understanding has a positive association with flawless knowledge.

In terms of perfect knowledge regarding consumption decisions, there is a difference between reading and knowing SPS and not reading and knowing SPS (complementary services: reading and knowing SPS = 1, not reading and knowing SPS = 0, Wald value 24.418, p-value (significance 0.05), reject H_0 . Ln 10.036 = 2.3062 and the odds ratio, or exp(B), of 10.036 demonstrate the effect of complementary services. It is 10.036 times more likely for someone to read and be aware of complementary services than not to do so, as these two behaviors are favorably connected with total knowledge.

The goods information source shows that there is a difference between reading and knowing GIS and not reading and knowing GIS in terms of perfect knowledge about consumption decisions (reading and knowing GIS = 1, not reading and knowing GIS = 0, Wald value 14.569, p-value (significant 0.05), rejecting H_0 . An illustration of the impact of information sources is the odds ratio, or exp(B), of 7.353 and $ext{Ln } 7.353 = 1.9951$. Complete knowledge has a favorable correlation with reading and understanding information sources, increasing the likelihood of doing so by up to 7.353 times. The results of the partial hypothesis test showed one inconsequential parameter, hence it was decided not to regress or eliminate it. A binary logistic regression model was used to transform the tabular data into an equation, which looks like this:

$$\begin{split} Logit_i &= ln \bigg(\frac{Prob_{event}}{1 - Prob_{event}} \bigg) \\ &= -17.549 - 0.040_{GEN} + 1.081_{EDU} + 0.839_{INC} + 1.025_{DEP} + 2.937_{BRD} \\ &+ 2.507_{PKG} + 2.606_{LBL} + 3.405_{GRT} + 2.306_{SPS} + 1.995_{SIG} + \varepsilon \end{split}$$

or in the form of:

$$\hat{P} = \frac{\exp(-17.549 - 0.040_{GEN} + 1.081_{EDU} + 0.839_{INC} + 1.025_{DEP} + 2.937_{BRD} + 2.507_{PKG} + 2.606_{LBL} + 3.405_{GRT} + 2.306_{SPS} + 1.995_{SIG})}{1 + \exp(-17.549 - 0.040_{GEN} + 1.081_{EDU} + 0.839_{INC} + 1.025_{DEP} + 2.937_{BRD} + 2.507_{PKG} + 2.606_{LBL} + 3.405_{GRT} + 2.306_{SPS} + 1.995_{SIG})}$$

The likelihood of a purchasing decision in the perfect or imperfect knowledge category is also influenced by variables including education, income, family size, brand, packaging, labeling, warranties, supplementary services, and information sources. The outcomes of this analysis are as follows:

$$\hat{P} = \frac{2,71828(-17.549 - 0.040x0 + 1.081x1 + 0.839x1 + 1.025x1 + 2.937x1 + 2.507x1 + 2.606x1 + 3.405x1 + 2.306x1 + 1.995x1)}{1 + 2,71828(-17.549 - 0.040x0 + 1.081x1 + 0.839x1 + 1.025x1 + 2.937x1 + 2.507x1 + 2.606x1 + 3.405x1 + 2.306x1 + 1.995x1)}$$

$$\hat{P} = \frac{2,71828182845904^{1,152}}{1 + 2,71818282845904^{1,152}} = \frac{3,165}{1 + 3,165} = \frac{3,165}{4,165} = 0,7599 \ atau \ 76 \%$$

Because of the ten variables that are now in place, households have the chance to be classified as either perfect or imperfectly knowledgeable. The explanation is that families can read and access 76% of the 44 indicators utilized as a source of information. Additionally, the anticipated group value of respondents' responses falls into category 1, or perfect knowledge, and the probability index obtained was 0.7599 (i.e., 0.7599 > 0.65). This indicates that 320 respondents, or 76% of the sample, fit the description of cautious customers. Additionally, 102 respondents, or 24% of the sample, are categorized as indifferent or careless consumers because they have category 0 or imperfect knowledge (Hernández & Kaeck, 2019).

DISCUSSION

There wouldn't be any complaints, refunds, or fraud if customers were fully informed about the products they were using. In reality, though, customers frequently use or return expired goods. Producers who engage in unethical procedures during processing breach halal requirements, health and hygiene standards, and the substances utilized, particularly when it comes to products that are consumed at home. Even if a company has halal, ISO, or other certifications, they are only valid for a specific amount of time and are only issued periodically. What about the manufacturing procedure in a company that operates around the clock? Therefore, producers may act unethically both when they are making the product and when they are selling it to consumers.

Despite having perfect information, household consumption decisions are dependent on their awareness of a wide range of products, including non-food items. It is questionable, nevertheless, that perfect knowledge holds true for the products they use. First, actual knowledge (AK) becomes an objective metric and a competence factor that an individual possesses in order to enhance the efficiency of information seeking and the precision of problem solving in consumption choice making. Regarding AK, perfect knowledge means that a household makes a decision based on a wealth of information; if the information is favorable, the decision is made; if it is unfavorable, the household delays consuming the product. Second, this pertains to self-assessment of knowledge (SAK), which may or may not motivate people to look for and consider information pertinent to the product.

The concept of positive thinking holds that when a household consumes a food or beverage, it just considers that the product is good and does not consider the production process. Third, whether through willful ignorance or carelessness, this circumstance presents a gap that unethical producers might take advantage of to benefit handsomely from the sale of their products. In line with the study Hernández & Kaeck (2019) that households can utilize their knowledge and their judgments about the things they use

to protect themselves from financial, psychological, and medical hazards by avoiding producers' deceit and purposeful disclosure of facts. How much do families know about the products they use and how they base their purchasing decisions on factors and sets of facts.

CONCLUSIONS

Two psychological categories can be used to categorize individual consumption decisions: "Careful; this condition leads to perfect knowledge" and "Careless; this condition leads to imperfect knowledge, and is often deceived."

Once all indications have been thoroughly examined and compiled into 10 independent variables, it is possible to draw the following conclusions: *First;* that, with the exception of gender, which responds negatively, factors such as education, income/price, family size, brand knowledge, packaging, labeling, guarantees, extra services, and information sources significantly positively impact a person's consumption decisions.

Second: Only 76% of people read or know anything about instant noodles out of all the information indications that are offered, but this still qualifies as excellent knowledge.

Third; Customers may be duped by producers who conceal false information, by information that is given insufficiently, or by the carelessness of the individual consumer.

Fourth; The lack of alternatives to the product being eaten is one example of how the quantity of information is not always taken into account when making decisions about consumption.

Fifth; Decisions about consuming are not always made with complete awareness or information. Lastly, this study demonstrates that consumption is not restricted to a specific product and can happen when an individual has a lot of information, little information, or perfect and imperfect knowledge.

IMPLICATIONS: Manufacturers need to make sure that the absence of information about their products doesn't hurt customers. However, the government must also safeguard consumers by requiring businesses to provide labels or other terms on their products.

RESEARCH LIMITATION AND FUTURE RESEARCH

For future study focuses on recognizing packaged goods, particularly instant noodles; additional research can detect other packaged or non-packaged goods, like food served in cafés and restaurants, among others

REFERENCES

- Agyekum, Crentsil Kofi, Haifeng, Huang, & Agyeiwaa, Amma. (2015). Consumer Perception of Product Quality. *Microeconomics and Macroeconomics*, 3(2), 25–29. https://doi.org/10.5923/j.m2economics.20150302.01
- Bharucha, J. (2018). Social Media and Young Consumers Behavior. *International Journal of Supply Chain Management*, 7(December), 72–81.
- Bourguignon, Francois, & Chiappori, Pierre Andre. (2016). The Collective Approach to Household Behavior. In Ian Walker R. W. Blundell, Ian Preston & Book (Eds.), *Cambridge Books Online* (pp. 70–85). Cambridge, UK: Cambridge University Press.
- Brucks, Merrie. (1985). The on Effects of Product Search Class Knowledge Information Behavior. *THE JOURNAL OF CONSUMER RESEARCH*, 12(Juni), 1–16.
- Chen, C. Y., & P, Michel Tuan. (2019). Affect Regulation and Consumer Behavior. Forthcoming in Consumer Psychology Review, 2(January), 1–94.
- Dimara, E., & S, Dimitris. (2005). Consumer demand for informative labeling of quality food and drink products: a European Union case study. *Journal of Consumer Marketing*, 22(2), 90–100. https://doi.org/10.1108/07363760510589253
- Duniaindustri.com. (2016). 10 Negara Pengkonsumsi Mie Instant Terbesar di Dunia. Retrieved from http://duniaindustri.com/konsumsi-mie-instan-indonesia-tertinggi-kedua-di-dunia/

- Foxall, Gordon R. (2017). Behavioral Economics in Consumer Behavior Analysis. *The Behavior Analyst / MABA*, 40(May), 309–313. https://doi.org/10.1007/s40614-017-0127-4
- Gunawan, Priscillia Angela, & Kunto, Yohanes Sondang. (2022). PENGARUH BRAND IMAGE DAN NUTRITION LABEL TERHADAP KEPUTUSAN PEMBELIAN MIE INSTAN LEMONILO: EFEK MODERASI ORIENTASI MAKANAN SEHAT. *Jurnal Manajemen Pemasaran*, 16(1), 48–56. https://doi.org/10.9744/pemasaran.16.1
- Hair, J. F., B, William C., B, Barry J., & A, Rolph E. (2014). *Multivariate Data Analysis* (Seventh Ed). Retrieved from https://www.worldcat.org/title/multivariate-data-analysis/oclc/900353065
- Harlan, Johan. (2018). Analisis Regresi Logistik. Jakarta: Gunadarma.
- Herath, U. (2019). Consumer Behavior and Attitudes in Purchasing Vegetables. *Agricultural Research & Technology: Open Access Journal*, 2(May), 1–7. https://doi.org/10.19080/ARTOAJ.2019.20.556123
- Herispon, Herispon. (2019). An Empirical Analysis of Household Debt Behavior Determinants. *Economics and Finance in Indonesia*, 65(2), 132–148. https://doi.org/http://dx.doi.org/10.7454/efi.v65i2.627
- Hernández, Asunción, & Kaeck, Danielle Linton. (2019). Ethical Judgment of Food Fraud. Effects on Consumer Behavior. *Journal of Food Products Marketing*, 0(May), 1–23. https://doi.org/10.1080/10454446.2019.1621789
- Holdford, D. (2018). Consumer behavior. Virginia: Virginia Commonwealth University.
- Hosmer, David W., & Lemeshow, Stanley. (2000). *Applied Logistic Regression* (Secon). New York: A Wiley Interscience Publication.
- Isalman, Isalman, Ilyas, Ilyas, Istianandar, Farhan Ramadhani, & Ittaqullah, Nurul. (2025). Boycott Campaign Intensity on Consumer Boycott Intentions and Participation: The Role of Access to Substitute Products. *Journal Of Economics, Business and Accountancy Ventura*, 27(3), 430–444. https://doi.org/10.14414/jebav.v27i3.4737
- Kompas.com. (2016). Sejarah Mie Instan di Indonesia. Retrieved from https://travel.kompas.com/read/2016/03/07/120418427/Mi.Instan.dan.Sejarahnya?page=all
- Kosasih, Eva, Barus, Eka Valencia Br, Rusniati, Ni Wayan, & Cahyani, Cokorda Istri Sintya Dwi Mirah. (2025). Analisis Perpindahan Preferensi Konsumen Antar Merek Mie Instan Menggunakan Model Markov Chain (Studi Kasus: Mie Gacoan, Mie Kober, dan Wizzmie). *Jurnal Cendekia Ilmiah*, 4(3), 2796–2804.
- Lapteva, I. P., T, Lyubov N., & NG, Elena. (2018). Approaches to assessing factors of consumer behavior. *Social Statistic*, 15(30–39).
- Larsen, Nils Magne, Sigurdsson, Valdimar, & Breivik, Jørgen. (2017). The Use of Observational Technology to Study In-Store Behavior: Consumer Choice, Video Surveillance, and Retail Analytics. *BEHAVIORAL ECONOMICS IN CONSUMER BEHAVIOR ANALYSIS*, (October), 1–30. https://doi.org/10.1007/s40614-017-0121-x
- Lawson, Stephanie J., Gleim, Mark R., & Hartline, Michael D. (2021). Decisions , decisions : variations in decision-making for access-based consumption. *Journal of Marketing Theory and Practice*, $\theta(0)$, 1–17. https://doi.org/10.1080/10696679.2020.1855990
- Li, Zhen, Choi, Soochan, & Forrest, Jeffrey Yi lin. (2022). Understanding peer pressure on joint consumption decisions: the role of social capital during emerging adulthood. *Young Consumers Insight and Ideas for Responsible Marketers*, (October), 1–22. https://doi.org/10.1108/YC-03-2022-1494
- Meixner, O., H, Rainer, P, Yana, & C, Maurizio. (2014). Consumer Attitudes, Knowledge, and Behavior in the Russian Market for Organic Food. *International Journal on Food System Dynamics*, 5(November), 11–120. https://doi.org/10.18461/ijfsd.v5i2.525
- Naini, Nurul Fitrianis, Santoso, Sugeng, Andriani, Tanti Stevany, Claudia, Unique, & Nurfadillah. (2022). The Effect of Product Quality, Service Quality, Customer Satisfaction on Customer Loyalty. *Journal of Consumer Sciences*, 7, 34–50. https://doi.org/https://doi.org/10.29244/jcs.7.1.34-50
- Nils Magne Larsen, Sigurdsson, Valdimar, & Breivik, Jørgen. (2017). The Use of Observational Technology to Study In-Store Behavior: Consumer Choice, Video Surveillance, and Retail Analytics. *The Behavior Analyst / MABA*, (October), 1–30. https://doi.org/DOI 10.1007/s40614-017-0121-x

- Nokhiz, Pegah, Patwari, Neal, Ruwanpathirana, Aravinda Kanchana, & Venkatasubramanian, Suresh. (2021). *Precarity: Modeling the Long Term Effects of Compounded Decisions on Individual Instability*. 199–208. https://doi.org/10.1145/3461702.3462529
- Octavia, Ercilia Rini. (2025). Social Media Marketing and Branding in Creating Willingness to Pay Premium Prices: A Study of Home Brand Tea Products. *Journal of Economics, Business, and Accountancy Ventura*, 27(3), 385–399. https://doi.org/10.14414/jebav.v27i3.4744
- Park, C.Whan, Feick, Lawrence, & Mothersbaugh, David L. (1992). CONSUMER KNOWLEDGE ASSESSMENT: HOW PRODUCT EXPERIENCE AND KNOWLEDGE OF BRANDS, ATTRIBUTES, AND FEATURES AFFECTS WHAT WE THINK WE KNOW. *Advances in Consumer Research*, 19, 193–198. Retrieved from http://www.acrwebsite.org/volumes/7295/volumes/v19/NA-19
- Ramya, N., & ASA, Mohamed. (2016). Factors affecting consumer buying behavior Factors affecting consumer buying behavior. *International Journal of Applied Research*, 2(September), 76–80.
- Rihayana, I.Gede, & Aristana, I.Nengah. (2024). Exploring the Role of Knowledge Sharing in Enhancing Innovative Work Behavior in Small Medium-sized Industries. *Journal of Economics, Business and Accountancy Ventura*, 27(2), 284–300. https://doi.org/10.14414/jebav.v27i2.4623
- Rochmawati, & Marlenywati. (2015). PERILAKU KONSUMSI MIE INSTAN MAHASISWA FAKULTAS ILMU KESEHATAN UNIVERSITAS MUHAMMADIYAH DAN JURUSAN GIZI POLTEKKES KEMENKES PONTIANAK. *JURNAL VOKASI KESEHATAN*, *1*(November), 188–194.
- Russo, J.Edward, & Johnson, Eric J. (1980). WHAT DO CONSUMERS KNOW ABOUT FAMILIAR PRODUCTS? *Advances in Consumer Research*, 7, 417–423. Retrieved from http://acrwebsite.org/volumes/9708/volumes/v07/NA-07
- Sembiring, Tamaulina Br, Sirait, Adri Sadewa, Kesuma, Roy Nanda, Khairunisa, Elvira, Syahrani, Annisa Ayu, & Falah, Muhammad Zidan Al. (2024). Pengaruh Mie Instan Pada Kesehatan Masyarakat. *Journal of Social Science Research*, 4, 7319–7327.
- Stankevich, A. (2017). Explaining the Consumer Decision-Making Process: Critical Literature Review. *Journal of International Business Research and Marketing*, 2(6), 7–14. https://doi.org/10.18775/jibrm.1849-8558.2015.26.3001
- Suryandari, Sofia Yustiani, & Ernawati, Ernawati. (2022). Tren Konsumsi Mie Samyang di Kalangan Mahasiswa: Pertimbangan Labelisasi Halal dan Promosi Produk Pada Keputusan Membeli. *Jurnal Manajemen Bisnis Syariah*, 4(2), 113–131. https://doi.org/DOI: 10.24090.mabsya.v4i1.6666
- Wood, Wendy, & Hayes, Timothy. (2012). Social In fl uence on consumer decisions: Motives, modes, and consequences. *Journal of Consumer Psychology*, 22(3), 324–328. https://doi.org/10.1016/j.jcps.2012.05.003
- Zhang, Q., Seetharaman, P. B., & N, Chakravarthi. (2012). The Indirect Impact of Price Deals on Households 'Purchase Decisions Through the Formation of Expected Future Prices. *Journal of Retailing*, 88(1), 88–101. https://doi.org/10.1016/j.jretai.2011.08.004